# numpy.repeat() Function

The `numpy.repeat()` function takes the repetitions (int) as an input argument, repeats the elements of an array, and returns the repeated array as output. The repetitions can happen row and column-wise if we pass the axis argument else the array will be flattened and then repeated.

## Syntax

The syntax of `numpy.repeat()` function is:

``numpy.repeat(a, repeats, axis=None)``

## Repeat Parameters

The `numpy.repeat()` method can take 3 parameters:

• arr – An array-like object as an input argument
• repeats – The number of repetitions for each element.
• axis(optional) – The axis along which to repeat the values. If `None`, it uses the flattened input array and returns a flattened output array.

## Return Value

The `numpy.repeat()` method returns an array with the same shape as arr, except along the given axis.

## Example 1: Repeating the Single-Dimensional NumPy Array

In the below example, we are using the `numpy.repeat()` method on the 1-Dimensional NumPy Array. The repetition occurs elements-wise, and each element gets repeated in the 1-D Array as shown.

``````from array import array
import numpy as np

# NumPy Array
arr = np.array([1, 2, 3])

# Prints original Array
print('Original Array\n', arr)

# repeat the 1-D array 2 times
new_arr = np.repeat(arr,2)

# print the NumPy Array
print('Repeating 1-D Array\n',new_arr)``````

Output

``````Original Array
[1 2 3]

Repeating 1-D Array
[1 1 2 2 3 3]``````

## Example 2: Repeating the Two-Dimensional NumPy Array

In the previous example, we saw the repetition happens element-wise instead of Array wise.

In the case of a 2-Dimensional Array, the `numpy.repeat()` method will return a flattened array by default and then repeat the elements.

It means the arrays are first reshaped to single-dimensional before repeating. This happens because we are not passing the axis argument; by default, it takes as none and reshapes into 1-Dimensional Array.

``````from array import array
import numpy as np

# NumPy Array
arr = np.array([[1, 2, 3],[4,5,6]])

# Prints original Array
print('Original Array\n', arr)

# repeat the 2-D array 2 times
new_arr = np.repeat(arr,2)

# print the NumPy Array
print('Repeating 2-D Array\n',new_arr)``````

Output

``````Original Array
[[1 2 3]
[4 5 6]]

Repeating 2-D Array
[1 1 2 2 3 3 4 4 5 5 6 6]``````

## Example 3: Repeating the NumPy Array Row Wise

In most cases, we do not want to flatten the multi-dimensional array; rather, we would need to repeat the array along the axis, i.e., either row-wise or column-wise.

In NumPy Array, the 0th axis represents the row; hence if we need to repeat the array row-wise, we need to pass `0` into the `axis` argument.

``````from array import array
import numpy as np

# NumPy Array
arr = np.array([[1, 2, 3],[4,5,6]])

# Prints original Array
print('Original Array\n', arr)

# repeat the 2-D array 2 times along row
new_arr = np.repeat(arr,2,axis=0)

# print the NumPy Array
print('Repeating 2-D Array Row Wise\n',new_arr)``````

Output

``````Original Array
[[1 2 3]
[4 5 6]]

Repeating 2-D Array Row Wise
[[1 2 3]
[1 2 3]
[4 5 6]
[4 5 6]]``````

## Example 4: Repeating the NumPy Array Column Wise

In NumPy Array, the 1st axis represents the column; hence if we need to repeat the array column-wise, we need to pass `1` into the `axis` argument.

``````from array import array
import numpy as np

# NumPy Array
arr = np.array([[1, 2, 3],[4,5,6]])

# Prints original Array
print('Original Array\n', arr)

# repeat the 2-D array 2 times along Column
new_arr = np.repeat(arr,2,axis=1)

# print the NumPy Array
print('Repeating 2-D Array Column Wise\n',new_arr)``````

Output

``````Original Array
[[1 2 3]
[4 5 6]]

Repeating 2-D Array Column Wise
[[1 1 2 2 3 3]
[4 4 5 5 6 6]]``````

## Conclusion

The `numpy.repeat()` function repeats the elements of an array along the given axis and returns the repeated array as output. By default, if we do not pass the `axis` parameter the 2-Dimensional array would be flattened into 1-Dimensional and then repeated.

If we have to repeat the Array row-wise then we need to pass `0` into the `axis` parameter and for repeating column-wise we need to pass `1` into the `axis` parameter.

Reference: NumPy Library

Subscribe to get notified of the latest articles. We will never spam you. Be a part of our ever-growing community.

## [Solved] Error in plot.new() : figure margins too large

Table of Contents Hide What is error in plot.new() : figure margins too large?How to fix error in plot.new() : figure margins too large?Solution 1 – Increase the plot panel…

## Python – List Files in a Directory

Table of Contents Hide Method 1: Using os.listdir() methodMethod 2: Using os.walk() methodMethod 3: Using os.scan() methodMethod 4: Using glob module There are several modules available in Python to list…

## [Solved] ImportError: No module named matplotlib.pyplot

Table of Contents Hide ImportError: No module named matplotlib.pyplotInstall Matplotlib in OSX/Linux Install Matplotlib in WindowsInstall Matplotlib in Anaconda The ImportError: No module named matplotlib.pyplot occurs if you have not installed…

## nxnxn matrix python

Table of Contents Hide What is NxNxN?How to Create NxNxN Matrix in Python?Create NxN Matrix in Python 3 with Non Duplicating numbersCreate NxNxN matrix in Python using numpy In this…

## [Solved] NameError: name ‘pd’ is not defined

Table of Contents Hide Solution NameError: name ‘pd’ is not defined Method 1 – Importing pandas with Alias as pdMethod 2 – Importing all the functions from pandasMethod 3 –…

## Python String isupper()

Table of Contents Hide SyntaxParameterReturn ValueExample 1: Demonstrating the working of isupper() method Example 2: Practical use case of isupper() in a program Python String isupper() method is a built-in function…